Math Contest #23 [2 SBI]

avatar

Here you can keep your brain fit by solving math related problems and also earn SBI or sometimes other rewards by doing so.
The problems usually contain a mathematical equation that in my opinion is fun to solve or has an interesting solution.
I will also only choose problems that can be solved without additional tools(at least not if you can calculate basic stuff in your head), so don't grab your calculator, you won't need it.
↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓

Rules

No upvote, No resteem, No follow required!

I will give the SBI(s) randomly to any participants.

You have 4 days to solve it.

↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓

Problem

Find all zeros(including complex ones!) of the following polynomial:
P(x) = x⁴ + 8x³ + 24x² + 32x + 15

P(x) = 0
Solve for x!

↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓

To everyone who already participated in a past contest, come back today and try a new problem(tell me if you don't want to be tagged):
@addax @ajayyy @athunderstruck @bwar @contrabourdon @crokkon @fullcoverbetting @golddeck @heraclio @hokkaido @iampolite @kaeserotor @masoom @mmunited @mobi72 @mytechtrail @ninahaskin @onecent @rxhector @sidekickmatt @sparkesy43 @syalla @tonimontana @vote-transfer @zuerich

In case no one gets a result(which I doubt), I will give away the prize to anyone who comments.

↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓

@contrabourdon sponsors my contests with 2 STEEM weekly.
You can support him by using a witness vote on untersatz, so he can further support this and other contests.



0
0
0.000
4 comments
avatar

A bonus $trendotoken tip from ONECENT!
Also consider MAPR fund and MAXUV vote bonds too.
MAP Steem FinTech: growing your STEEM without SP.

0
0
0.000
avatar

via trying: -1 and -3;
rest: x^2+4x+5
—>
-2-i
-2+i

0
0
0.000
avatar

Took a similar approach as zuerich. with the try-out solutions (-1 &-3) and polynom division, the complex part can be reduced:

P(x) = x^4 + 8x^3 + 24x^2+ 32x + 15
     = (x + 3)(x^3 + 5x^2 + 9x + 5)
     = (x + 3)(x + 1)(x^2 + 4x + 5)
     = (x + 3)(x + 1)(x + 2 + i)(x + 2 - i)

Solving each bracket for 0 gives all zeros of the polynom => Solutions: -3, -1, -2-i, -2+i

0
0
0.000